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Results are presented from a computational study of the flow over a forward-facing
step in a plane channel. The aim of the study is to gain better insight into the
three-dimensionality that is typically observed in the separation region of flows over
steps and ribs, and in similar configurations. We consider laminar flow at a Reynolds
number of 330, based on step height and bulk velocity of the oncoming flow, and the
step is assumed to be infinitely extended in the spanwise direction. High-resolution
simulations are undertaken using a mixed spectral/spectral-element code. Moreover, a
linear stability study of the flow at the step is performed. The results show that, in the
case considered, the three-dimensionality is not related to some absolute instability of
the separation bubble in front of the step; rather, it is a sensitive reaction of the flow
to three-dimensional perturbations present in the oncoming stream. It is demonstrated
that disturbance amplitudes of less than 1% of the mean flow (at, say, 10 step heights
ahead of the step) already suffice to produce a visibly three-dimensional structure of
the separation zone. If the disturbance level is systematically decreased, the three-
dimensional state evolves to an almost two-dimensional recirculation. Here, the key
finding is that the intensity of the flow response is proportionate to the amplitude of
the inflow disturbance, meaning that the breakup of the flow in the step region is a
linear (i.e. small) perturbation of the two-dimensional base flow. A comparison of the
present simulation results with experimental data shows close agreement concerning,
for example, the flow topology in the step region, and the spanwise spacing of the
characteristic streaks that form further downstream.

1. Introduction
Flow separation and recirculation caused by blunt obstacles or sudden constrictions

in flow geometry play an important role in many engineering applications. Pipe
systems, for example in chemical reactors or food-processing devices, often exhibit
abrupt changes in tube diameter, or may be furnished with baffles or ribs that
obstruct the flow path. Similarly, flows over and around wall-mounted obstacles
or through orifices are frequently encountered in practice, examples being heat
exchangers, combustors, or flow meters, to name but a few. The transport and mixing
properties of such flows are therefore of great interest. A prototype configuration for
studying separation ahead of blunt obstacles, which has received particular attention
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Figure 1. Sketch of two-dimensional forward-facing step flow in a plane channel. h and H
denote the height of the step and the channel height in the oncoming stream, respectively. The
flow separates ahead of the step and reattaches at the vertical wall. In general, the length Lr

of the recirculation zone depends on the Reynolds number. Note that on top of the step, a
second smaller separation bubble may develop. Li denotes the distance of the inflow plane
upstream of the step as employed in the simulations. La is the according distance between
step and outflow plane. The dashed line indicates the region considered in the linear-stability
analysis.

in the past, is the flow over a forward-facing step (FFS) in a plane channel (see
e.g. Abu-Mulaweh, Armaly & Chen 1996a, b; Chiba, Ishida & Nakamura 1995;
Pollard, Wakarani & Shaw 1996; Stüer, Gyr & Kinzelbach 1999). This generic flow
problem will also be considered in the present work. Closely related configurations
that were also studied include the forward-facing double step analysed by Shakouchi
& Kajino (1993), flows along circular cylinders with a sudden increase in diameter (see
Driver & Hebbar 1989; Watanabe & Kamiya 1996), or the flow over surface-mounted
square ribs or cubes examined, for example, by Chou & Chao (2000), Dimaczek et al.
(1989), and Werner & Wengle (1989).

Earlier work on the FFS configuration had focused on the purely two-dimensional
case (see e.g. Dennis & Smith 1980; Mei & Plotkin 1986), which is sketched in figure 1.
The key features of the flow are a recirculation zone with separation occurring ahead
of the step, reattachment at the vertical wall, and another smaller separation zone
downstream of the corner point. The simplification to two dimensions may seem
natural at first sight, but it should be noted that many separated flows have a
tendency towards three-dimensionality. This is reflected, for example, in the stability
properties of separated boundary layers at high Reynolds numbers (Re), where
three-dimensional modes may become preferentially excited as a consequence of non-
parallelism of the base flow (Stewart & Smith 1987; see also the overview article
Smith 2000 and the references cited therein). For forward-facing steps and similar
configurations, experiments as well as numerical simulations clearly revealed that the
separation zone ahead of the step develops a three-dimensional structure (see Chiba
et al. 1995; Pollard et al. 1996; Smith & Walton 1998; Stüer et al. 1999; Chou &
Chao 2000). Note, however, that this three-dimensionality not only occurs at high
Reynolds numbers; it is also observed with flows at low Reynolds numbers down
into the viscous regime.

Among the most comprehensive studies of FFS flow is the work of Stüer (1999) who
performed experiments in a water channel for two different constrictions (h/H = 1/4
and 1/2, respectively, see figure 1), and for Reynolds numbers as low as about 30.
The three-dimensionality is recognized from his hydrogen-bubble visualizations which
show the formation of streaky structures downstream of the step corner (see figure 2).
Such streaks were also observed by Pollard et al. (1996), and they closely resemble
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Figure 2. Hydrogen-bubble visualization of Stüer (1999), showing the formation of streaky
structures downstream of the step. The hydrogen bubbles are generated from electrical pulses
through a thin wire placed in the oncoming stream. (a) illustrates the location of the region
depicted in (b). The Reynolds number of the flow is Re= 330.

the structures that Chou & Chao (2000) report from their experiments on flows
over rib-like obstacles. In addition, Stüer’s detailed velocity measurements show the
three-dimensional flow ahead of the step to be an open-type separation rather than a
closed separation as encountered in two dimensions. The streamline pattern computed
from his experimental data reveal contracting spiralling motions in the separation
zone, which resemble the flow structures ahead of three-dimensional blunt obstacles
described by Smith & Walton (1998). A simplified sketch of this flow pattern at the
step is provided in figure 3, which illustrates how fluid entrained into the separation
region is transported in the spanwise direction, before being released over the step
corner. The spanwise positions where the entrained fluid is released coincide with the
locations of streak formation seen in figure 2.

Much has been learned in recent years about the topology of laminar FFS flow at
low Reynolds numbers, but still little is known about why a stable and seemingly two-
dimensional flow in the oncoming stream breaks up into a three-dimensional pattern
at the step. Attempts to explain this phenomenon resorted to very diverse fluid-
dynamics mechanisms. For example, Chiba et al. (1995) held a Görtler-type instability
responsible for the onset of three-dimensionality, while other authors assumed that
near-wall streaks in the oncoming flow may play a dominant role regarding the three-
dimensional structure and the streak formation downstream (see Pollard et al. 1996).
Such near-wall streaks are prominent features of wall turbulence (see Robinson 1991;
Wilhelm, Härtel & Eckelmann 1998) and may be of importance in turbulent flows
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(a)                                                                              (b)
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Figure 3. Sketch of the structure of the separation region in front of a forward-facing step. (a)
Two-dimensional flow featuring a closed separation bubble. (b) Side view and (c) perspective
view of the open recirculation zone typically encountered in three dimensions. The streamline
in (c) illustrates how oncoming fluid is entrained into the separation zone and transported in
the spanwise direction, before being released over the step corner.

at higher Reynolds numbers. However, in low-Reynolds-number flows such near-wall
streaks do not exist. Finally, an absolute instability of the two-dimensional separation
bubble itself has been suggested in the literature (see e.g. Stüer 1999), a mechanism
that gains some plausibility from the omnipresence of the three-dimensional structure
in a wide variety of configurations.

To further improve the understanding of FFS flow, and to shed more light on
the conditions on which the two-dimensional–three-dimensional transition at the step
depends, we have undertaken a computational analysis where the response of a two-
dimensional flow to three-dimensional disturbances is studied in a highly controlled
setting. In this analysis, we are especially interested in lower Reynolds numbers where
the oncoming flow far ahead of the step is stable to all disturbances. Results will be
presented here for a Reynolds number of Re =330, based on the step height and bulk
velocity. Moreover, we only consider the case of a step which is infinitely extended
in the spanwise direction, meaning that potential boundary effects arising from a
finite width of the step are not taken into account. However, available experimental
evidence suggests that boundary effects do not play a key role in the present case,
at least as far as the structure of the separation zone is concerned. For example,
Stüer (1999) systematically varied the end parts of his step configuration in the water
tank, but did not observe any influence on the three-dimensional flow pattern in the
separation region.

The present study comprises a linear-stability analysis of the two-dimensional flow
in the step region as well as three-dimensional direct numerical simulations. Among
the issues we seek to clarify is whether or not a two-dimensional separation bubble
ahead of a step is absolutely unstable (in the sense of Huerre & Monkewitz 1990),
i.e. whether a weak three-dimensionality of the recirculation region itself may grow
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to large amplitudes even if the oncoming flow is undisturbed. Moreover, we will
consider in detail the role that inflow disturbances play for the two-dimensional–
three-dimensional transition at the step. Since high accuracy is required in any
computational analysis of hydrodynamic stability problems, a numerical method
based on spectral and spectral-element discretization is employed in the simulations.
The main features of this numerical technique are briefly outlined in § 2 where the
governing equations are also presented. Section 3 then contains results from the
linear-stability analysis of the flow in which only a small subdomain of the channel
enclosing the step is considered. This stability analysis is based on two-dimensional
simulation data and employs a wave ansatz for the three-dimensional disturbances.
The main part of the paper, § 4, is then devoted to the simulation results where the
evolution of disturbances of various types and amplitudes in the flow are studied in
detail. Finally, § 5 summarizes the main findings of our study.

2. Governing equations and simulation approach
We are concerned with incompressible flows of Newtonian fluids in a plane channel

containing a forward-facing step of height h. The flow domain is sketched in figures 1
and 2, where H is the channel height in the oncoming flow, and x1, x2 and x3

denote the streamwise, wall-normal and spanwise directions of the flow domain,
respectively. The ratio of step height to channel height h/H is generally set to 1/4
here. In the simulations, the flow domain is bounded by inflow and outflow planes
located at distances of Li and La , respectively, from the step. Since the position of
these inflow/outflow planes may exert an influence on the solution, we performed
two-dimensional calculations in which Li and La were varied systematically. From
these simulations, we found that the finite size of the flow domain has a negligible
effect on the flow field in the neighbourhood of the step provided that at least Li =20
and La = 30. These values of Li and La were then used in all simulations. At the
open boundaries in the spanwise direction, we assume the flow to be periodic (note
that in experiments the structure of the three-dimensional separation region typically
appears as a quasi-periodic cellular pattern). Finally, solid boundaries are imposed at
the bottom and top of the channel, as well as at the vertical step wall.

The fluid motion in the present case is governed by the incompressible Navier–
Stokes equations. Using the bulk velocity UQ of the flow ahead of the step (defined
as the volume flux divided by the channel cross-section) and the step height h for
normalization, these equations read in dimensionless form

∂u
∂t

− 1

Re
�u + ∇q = −C(u) u, (1)

div u =0, (2)

where u denotes the velocity and C(u) u the nonlinear term. The term q is the pressure
divided by the density (which is assumed constant). In equation (1), Re = UQh/ν is
the Reynolds number of the flow which is computed from UQ, h and the kinematic
viscosity ν of the fluid. As boundary conditions in the inflow plane, we prescribe
developed channel flow with a parabolic velocity profile which can be written in
non-dimensional form as

u1(x2) = 3
2
x2(1 − x2/4). (3)

In some of the simulations, three-dimensional disturbances of various shape and
amplitude are superimposed to the Poiseuille parabola at inflow. In the outflow
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plane, homogeneous Neumann conditions are used for all three velocities, meaning
that the respective gradients in x1 have to vanish. Numerical tests showed that with
this boundary condition no undesired feedback effects occurred from the outflow
boundary on the flow in the interior of the domain.

To solve the basic equations numerically, a spatial discretization is performed which
uses a Fourier scheme in the homogeneous spanwise direction x3, i.e.

u(x, t) =

Nz/2−1∑
m = −Nz/2+1

ûm(x1, x2, t) exp(imα0x3), (4)

q(x, t) =

Nz/2−1∑
m = −Nz/2+1

q̂m(x1, x2, t) exp(imα0x3), (5)

where û =(û1, û2, û3) and q̂ are the complex Fourier coefficients (modes) of velocity
and pressure, respectively. α0 = 2π/Lz denotes the fundamental wavenumber in the
spanwise direction (Lz being the length of periodicity), and i =

√
−1. Inserting the

Fourier expansions of order Nz for the velocities u and the pressure q into the gov-
erning equations and applying the standard Galerkin procedure yields a system of
four coupled equations for each of the Nz Fourier components

∂ ûm

∂t
− 1

Re

(
∂2

∂x2
1

+
∂2

∂x2
2

− m2α2
0

)
ûm + ∇̂q̂ = −Ĉm(ûm) ûm

, (6)

(
∂

∂x1

+
∂

∂x2

+ i mα0

)
ûm = 0, (7)

where the term on the right-hand side of equation (6) denotes the Fourier transform
of the nonlinear term, and

∇̂ =(∂/∂x1, ∂/∂x2, i mα0)
T . (8)

The above equations are then discretized in the two inhomogeneous directions by a
spectral-element method (SEM) which decomposes the (x1, x2)-plane into a number
of K non-overlapping subdomains (spectral elements). In each element, the solutions
for velocity and pressure are expanded in tensor-product-based polynomials of order
N and N − 2, respectively. While the velocities are discretized at the Gauss–Lobatto–
Legendre points, the pressure is discretized at the Gauss–Legendre points. Detailed
discussions of this so-called PN − PN−2 SEM can be found, for example, in Maday
& Patera (1989), Fischer (1997) or Wilhelm (2000). As an aside, we remark that the
formulation of the nonlinear term C(u) u requires care in this type of spectral-element
approach, as some of the more widely used forms are prone to a numerical instability
(see Wilhelm & Kleiser 2000, 2001). Here, we use the nonlinear term in the so-called
convective form defined by

C(u) u = (u · ∇)u. (9)

Finally, the time discretization of the governing equations is accomplished by a semi-
implicit method, with the linear terms being treated implicitly using a second-order
backward-differentiation scheme, and the nonlinear terms being treated explicitly by
a second-order extrapolation method (cf. Karniadakis, Israeli & Orszag 1991).

The specific advantage of a spectral-element discretization is that it allows us to
combine high numerical accuracy with flexibility concerning the distribution of mesh
points. This flexibility is needed to cope with the flow in the vicinity of the step corner
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Figure 4. Pressure q at height x2 =h + δx2 as a function of the relative distance from the
step corner located at x1,s . δx2 is the wall distance of the first grid line of the pressure mesh
in the downstream section of the channel. Result for two-dimensional FFS flow at Re= 330
(Wilhelm & Kleiser 2001).

where steep gradients occur in vorticity and pressure (see e.g. Dennis & Smith 1980).
To illustrate this more clearly, figure 4 gives the pressure distribution along a grid line
immediately above the corner point, as obtained from a two-dimensional simulation
for Re = 330 by Wilhelm & Kleiser (2001). To achieve good resolution in this part
of the flow domain, we employ the ‘geometric mesh refinement’ strategy proposed
by Gerdes & Schötzau (1999), in which the size of the spectral elements decreases
with decreasing distance from the corner. The structure of the resulting mesh in the
(x1, x2)-plane, as it is generally used in the present study, can be seen from figure 5.
Note that mesh refinement is applied in both directions x1 and x2.

3. Linear stability analysis
Before discussing the numerical simulations in more detail in § 4, we will present

a linear stability analysis, which we performed in order to clarify whether a purely
two-dimensional separation bubble ahead of a (infinitely extended) step is prone to
some three-dimensional absolute instability. In this analysis, we concentrate on a small
subdomain of the flow enclosing the separation zone and the step corner, as indicated
in figure 1. As a basis for the stability study, a highly-resolved two-dimensional base
flow is taken from the simulations of Wilhelm & Kleiser (2002). The topology of the
two-dimensional base flow is illustrated in figure 6 by means of streamlines. Both
the recirculation bubble in front of the step and a separation zone downstream of
the corner are clearly visible. The approach we have taken for the stability analysis
is essentially the same as that employed by Härtel, Carlsson & Thunblom (2000)
and Graf, Meiburg & Härtel (2002), who investigated three-dimensional absolute
instabilities in natural convection flows and Hele-Shaw flows, respectively. For this
reason, we will give only a brief discussion of the main aspects of the method here.
Note also that our approach is very similar to the techniques employed previously by
other authors studying three-dimensional instabilities in separated flows (see Kaiktsis,
Karniadakis & Orszag 1991, for backward-facing step flow, or Theofilis, Hein &
Dallmann 2000, for a study of two-dimensional separation bubbles).
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Figure 5. Computational grid with mesh refinement towards the step corner. In the region to
the left of the step (i.e. in the Cartesian region [0, 20] × [0, 4]), 26 × 12 = 312 spectral elements
are used. The region to the right ([20, 50] × [1, 4]) is discretized by 36 × 7 = 252 elements. The
polynomial order within each element is N = 6. (b) shows an enlargement of the step region.
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Figure 6. Streamlines of two-dimensional FFS flow at Re= 330.

As usual in linear stability studies (see Drazin & Reid 1981), we set out from a
decomposition of all flow quantities into a basic part and a (infinitesimally) small
disturbance. While the base flow is two-dimensional, the disturbance is assumed to
be three-dimensional. Indicating the mean flow by an overbar and the disturbance by
a prime, this decomposition reads

u(x, t) = u(x1, x2) + u′(x1, x2, x3, t), (10)

q(x, t) = q(x1, x2) + q ′(x1, x2, x3, t). (11)

For the disturbance, we employ an ansatz which is wavelike in the spanwise direction
(wavenumber α), and which is stationary in that it does not travel in the spanwise
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direction. Finally, assuming the dominant mode to grow (or decay) exponentially with
time at a rate σ , the disturbances can be written in the following form

f ′ = f̂ (x1, x2) cos(αx3) eσ t for f ′ = u′
1, u

′
2, q

′, (12)

f ′ = f̂ (x1, x2) sin(αx3) eσ t for f ′ = u′
3, (13)

where f̂ is the amplitude function (or shape function) that does not depend on time.
The evolution equations for the perturbations are obtained by inserting (10)–(13) into
the basic equations (1) and (2), and subtracting the equations for the mean flow.
Upon linearization, we then obtain the stability equations

∂û1

∂x1

+
∂û2

∂x2

+ αû3 = 0, (14)

σ û1 + û1

∂ū1

∂x1

+ û2

∂u1

∂x2

+ u1

∂û1

∂x1

+ ū2

∂û1

∂x2

+
∂q̂

∂x1

=
1

Re

(
∂2

∂x2
1

+
∂2

∂x2
2

− α2

)
û1,

(15)

σ û2 + û1

∂ū2

∂x1

+ û2

∂ū2

∂x2

+ ū1

∂û2

∂x1

+ ū2

∂û2

∂x2

+
∂q̂

∂x2

=
1

Re

(
∂2

∂x2
1

+
∂2

∂x2
2

− α2

)
û2,

(16)

σ û3 + ū1

∂û3

∂x1

+ u2

∂û3

∂x2

− αq̂ =
1

Re

(
∂2

∂x2
1

+
∂2

∂x2
2

− α2

)
û3. (17)

The system (14)–(17) constitutes an eigenvalue problem for the temporal growth rate
σ which depends on the given two-dimensional base flow u, on the wavenumber α,
and on Re. This eigenvalue problem is solved numerically by discretizing all spatial
derivatives using a spectral-element collocation technique on a mesh with N nodal
points. This mesh is – in the subdomain considered – very similar to the grid used
for the base flow. These meshes are not identical because a slightly higher order
of discretization was needed in the stability analysis in order to reduce the total
number of nodal points. To obtain the mean-flow velocities on this mesh, cubic spline
interpolation was employed.

The spatial discretization transforms the stability equations into a general algebraic
eigenvalue relation involving two N × N matrices which contain the coefficients of
the differentiation schemes and the coupling terms between the discretized stability
equations. The number N of nodal points depends on the extent of the subdomain and
the computational resolution employed. In the present study, about 103 nodal points
were used, meaning that the matrices consist of some 106 elements each. To complete
the mathematical formulation, boundary conditions for the perturbations must be
prescribed. At the solid walls, homogeneous Dirichlet conditions are appropriate,
but at the open boundaries of the subdomain no natural boundary conditions are
available. However, in general we observed the eigenvalues to be very little sensitive
to the boundary conditions, and therefore homogeneous Dirichlet conditions were
prescribed at the open boundaries too. With the boundary conditions implemented,
the discretized system was then solved for the leading eigenvalues, using an iterative
procedure based on the implicitly restarted Arnoldi method (see Sorensen 1992).

The result of the stability analysis, i.e. the stability diagram of the flow, is depicted
in figure 7 where the amplification rate σ of the least-damped mode is given as a
function of the spanwise wavenumber α. The range in α examined extends from
0.1 to 20, but in the figure only the region around the maximum is shown. Given
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Figure 7. Linear-stability diagram of the flow in the step region. Shown is the amplification
rate σ of small disturbances as function of the spanwise wavenumber α.

that all eigenvalues are negative, it is clear that according to our investigation an
absolute instability of the two-dimensional flow in the step region does not exist for
the parameters considered. Rather, disturbances in this region will quickly be damped
out, making the flow return to an unperturbed two-dimensional state. The stability
results displayed in figure 7 are valid for small disturbances only, but in the subsequent
section we will give evidence that large-amplitude three-dimensional perturbations in
the separation region do decay as well. An interesting observation from figure 7 is
that the pronounced maximum of the stability curve indicates the existence of some
preferred (least-damped) spanwise length scale of the flow at the step. The maximum
of the stability curve is located at about α = 2.1 which corresponds to a spanwise
wavelength of three times the step height. This agrees closely with the typical spacing
of three-dimensional structures observed in experiments.

From figure 7 it is furthermore seen that the damping becomes stronger with
increasing two-dimensionality (i.e. α → 0). A similar dominance of three-dimensional
modes over two-dimensional ones is known from separated flows at high Reynolds
number (Stewart & Smith 1987), where three-dimensional modes are preferentially
amplified when the separation angle is sufficiently strong.

4. Numerical simulation results
The three-dimensional simulations performed in the present study were generally

initialized with a developed two-dimensional solution and superimposed three-
dimensional perturbations in the initial flow field or in the inflow boundary conditions.
Unless stated otherwise, the length of periodicity in the spanwise direction was set
to π (α0 = 2), i.e. to slightly more than three times the step height. This choice was
motivated by the typical streak spacing observed in experiments. In total, 564 spectral
elements with a polynomial degree of 6 were employed for the spatial discretization
in the (x1, x2)-plane.
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Figure 8. Time history of the maximum |û1(x1)|max of the spanwise Fourier amplitudes of
u1. The simulation is started with random three-dimensional perturbations in the initial flow
field superimposed onto a developed two-dimensional flow. As the inflow boundary condition,
undisturbed Poiseuille flow is prescribed.

4.1. Response to initial disturbances

The first series of simulations performed was intended to complement the linear-
stability analysis by studying the flow response to finite-amplitude random pertur-
bations in the initial field. As inflow boundary conditions, however, undisturbed two-
dimensional Poiseuille flows were prescribed in these runs. To make sure that potential
linear as well as nonlinear mechanisms are captured, various initial disturbance
amplitudes up to 10% (relative to the bulk velocity) were considered, and the dev-
elopment of three-dimensionality was monitored by the time history of the maximum
Fourier amplitudes |û1|max of the streamwise velocity component over the (x1, x2)-
plane. In agreement with the stability analysis, these simulations show that the
perturbation amplitudes of the three-dimensional initial noise eventually decay,
meaning that the flow returns to two-dimensionality. This is illustrated in figure 8
where the maximum |û1(m, t)|max of the Fourier components of the streamwise velocity
is depicted as a function of time, i.e.

|û1(m, t)|max := max
x1,x2

|û1(x1, x2, m, t)|. (18)

We remark that we conducted similar simulations for Reynolds numbers up to about
600 and obtained essentially the same results as for the Reynolds number Re =330
considered here.

Although the flow eventually returns to a two-dimensional state, a growth of
disturbance amplitudes is seen during an initial transient period in figure 8. The
reason for this growth is that disturbances were superimposed to the flow in the
entire computational domain rather than in the separation region only. Consequently,
the flow approaching the step is perturbed for a time interval �T which scales
with the length Li of the inflow section and a velocity scale characterizing the
downstream convective transport. Taking for the latter the bulk velocity UQ yields
�T ≈ Li/UQ = 20, a result which compares well with the duration of the phase of



12 D. Wilhelm, C. Härtel and L. Kleiser

growth seen in figure 8. This result already hints at the important role that incoming
perturbations play for the three-dimensionality in the step region, an issue which we
will concentrate on in the remainder.

4.2. The role of inflow disturbances

Since in the present case the recirculation zone at the step is not unstable per se,
it is clear that the two-dimensional–three-dimensional transition must be a sensitive
response of the flow at the step to perturbations in the oncoming stream. To examine
the response of the flow at the step to such inflow disturbances, we conducted
simulations with different perturbations superimposed to the parabolic mean flow in
the inflow plane. Two types of disturbance were considered:

(i) Perturbations in streamwise velocity. Variations of u1 in the inflow plane slightly
modulate the spanwise vorticity component ω3 and introduce wall-normal vorticity
ω2. Here, perturbations u′

1 of the following form are used

u′
1(x2, x3) = εe sin(2 x3) sin(x2 π/2), (19)

where εe is a parameter determining the disturbance level.
(ii) Perturbations in streamwise vorticity ω1 by longitudinal vortices. Longitudinal

vortices play an important role in numerous flows and may persist over long distances.
In our simulations, such vortices were introduced by boundary conditions for the
velocity components, which were taken from a Stokes’ solution of decaying vortices
in a fluid at rest between two parallel walls. As a measure εe for the disturbance
amplitude, we have taken the maximum value of the spanwise velocity in the inflow
plane.

As in the simulations discussed before, the steady-state two-dimensional solution
was used for initializing the flow field. The flow evolution was then followed in
time until stationarity was re-established throughout the flow domain. The unsteady
transient typically lasts some 50–60 dimensionless time units. The disturbance amp-
litude in the inflow plane was set to εe = 0.05, and 10 Fourier modes were used for
the spatial discretization in x3. This turned out to be sufficient to achieve a decay in
modal energy of six orders of magnitude throughout the computation.

The flow field obtained with inflow perturbations in u1 is visualized in figures 9
and 10, where sectional streamlines in the (x2, x3)-plane are depicted at five selected
downstream positions. To improve visibility, two periods in the spanwise direction
are shown. Note that, since u2 and u3 are not excited in the inflow plane, sectional
streamlines cannot possibly be plotted at x1 = 0, which is the reason why, in figure 9,
the first cross-section shown is slightly offset from the entrance plane. Among the
characteristic flow features recognized from the sectional streamlines is the formation
of one stagnation point per period at the vertical wall. Moreover, a pair of counter-
rotating vortices is seen which forms behind the step, and which persists for a long
distance downstream. These vortices are intimately related to the streaks in the outflow
part of the channel.

The second type of disturbances discussed above generates essentially identical flow
structures at the step and further downstream. The respective graphs are not shown
here for brevity, but can be found in Wilhelm (2000). This agreement makes clear
that the flow features in the step region are largely independent of the kind of inflow
disturbances imposed. Details of the background disturbances in the oncoming flow
are of minor importance, therefore, for the evolution of the three-dimensionality at
the step. This is also confirmed by simulations we conducted using random noise
superimposed onto all velocity components in the inflow profile. Note that such a
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Figure 9. Sectional streamlines in (x2, x3)-planes at selected downstream positions. As inflow
disturbance, perturbations in u1 only are prescribed.

perturbation fundamentally differs from the other two in that it does not prescribe a
dominant length scale from the outset. However, the results we obtained were again
similar to those found in the other cases (see Wilhelm 2000).

4.3. Flow structure at the step

The formation of vortex pairs at the step goes along with a cellular structure of the sep-
aration region which is illustrated by means of wall-friction lines in figure 11. The
boundary of separation is indicated by regions of convergent wall-friction lines. The
principle sketch provided in the same figure indicates that the separation line extends
up to the vertical wall of the channel. The point where the separation line meets the
wall is located between two counter-rotating vortices in the downstream section, which
is also the position where the fluid entrained into the separation region is released
over the step. A good impression of the three-dimensional motion associated with
the open separation can be achieved by following the trajectories of individual fluid
elements in the step region. A side view and top view of such streamlines are given
in figure 12. Starting points for the integration were placed in a cross-sectional area
about 5.5 units in front of the step. It is seen from the figure how fluid is entrained into
the vortex at the step, then moves either side in a spiralling motion, and finally, upon
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Figure 10. Sectional streamlines in (x2, x3)-planes at two selected downstream positions:
(a) x1 = 20 (step edge), (b) x1 = 30. Same flow as in figure 9.

release from the separation region, flows over the step corner in two concentrated
streaks. If the spanwise position of the streaks is compared with the position of the
vortical structures in figure 10(b), it is seen that a pair of counter-rotating vortices
is located between each two streaks. A direct comparison of the streamlines in
figure 12 with streamlines obtained in experiments of Stüer et al. (1999) is provided
in figure 13 where an excellent agreement is observed. Note that because of a slight
non-stationarity in the experiments, particles starting from the same spatial location
may follow different trajectories. However, such unsteadiness does not appear to be
an essential feature of the flow at the step, and in our simulations we obtained strictly
steady-state flow fields provided that the inflow disturbances were not varied with
time.

The difference in flow topology between two-dimensional forward-facing step flow
and the three-dimensional flow shown in figure 13 is pronounced, but it must be
emphasized that the amplitude of the spanwise velocity component is still small in
comparison to the maxima of the streamwise and normal velocities at the step. It is
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Figure 11. Wall-friction lines on the channel floor ahead of the step. Results for a disturbance
amplitude of εe =0.05 in the inflow plane (same flow as in figure 9). (b) shows the shape of
the separation line (solid lines) and indicates the location of the streaks downstream of the
step (dashed lines).

of interest, therefore, to compare the spanwise averaged three-dimensional flow field
with the two-dimensional result, in order to assess to what extent the mean flow is
distorted by the three-dimensionality in the separation region. Such a comparison is
furnished in figure 14, which gives isocontours of the streamwise velocities u1 and u1,
respectively. Here, the overbar indicates a spanwise average, that is

u1 :=
1

Lz

∫ Lz

0

u1 dx3.
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Figure 12. (a) Side view and (b) top view of streamlines in the step region. For the integration
of the streamlines, the flow domain has been extended in the spanwise direction by one period.
Same flow as in figure 9.

As seen from figure 14, the difference between the two-dimensional field and the
averaged three-dimensional field is marginal, making clear that the break-up of the
separation region at the step is only a weak perturbation to the two-dimensional
base flow. In the following section we will address this point in a more quantitative
fashion, and we will show that the three-dimensional perturbation is not only weak,
but also of an inherently linear nature.

We wish to come back here briefly to the necessity of inflow disturbances for
maintaining a three-dimensional flow. It has been demonstrated already that the flow
is not absolutely unstable, and that random initial perturbations are convected out
of the flow domain without causing a persisting two-dimensional–three-dimensional
transition (see figure 8). This return to two-dimensionality occurs in the same fashion
even if a fully developed three-dimensional structure already exists, meaning that the
flow does not lock into a three-dimensional state that remains self-sustained in the
absence of inflow disturbances. Using the converged stationary flow at time t = 70
as the initial condition, we continued the simulation for another 100 dimensionless
time units, but without superimposed perturbations in the inflow plane. The response
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(a)                                                                                              (b)

Figure 13. Perspective view of streamlines in the step region of FFS flow. Comparison of (a)
simulation results (same flow as in figure 9) and (b) streamlines computed by Stüer (1999)
from his experimental data. Note that only part of the flow domain in the normal direction is
shown.

of the flow is illustrated in figure 15 where again the maximum |û1(m, t)|max of the
Fourier components of the streamwise velocity is depicted as a function of time (see
equation (18)). The maximum amplitude in the steady-state field at t = 70 amounts
to some 7% of UQ for the fundamental mode (m = 1), and slightly less for the higher
harmonics. However, once inflow perturbations are no longer maintained, all dis-
turbance amplitudes quickly decay indicating the return of the flow to the two-
dimensional base state. At the end of the simulation, the maxima of all modes have
dropped below 10−5.

4.4. Dependence on inflow disturbance amplitude

Given the intimate relation between inflow disturbances and the three-dimensional
break-up of the separation bubble, the intensity of the flow response at the step has
to scale with the intensity of the perturbations in the oncoming flow. Moreover, since
the feedback effect of the three-dimensional perturbations on the two-dimensional
base flow was found to be marginal, we expect a linear scaling, with perturbation
amplitudes at the step being proportional to perturbation amplitudes in the inflow
plane. To examine this point, we conducted two further simulations with inflow
conditions according to equation (19), but with disturbance levels of εe = 0.01, and
εe = 0.005, respectively. As a measure of the three-dimensionality, a root-mean-square
value of u1 is employed here, which is based on the local deviation of the (time-
converged) three-dimensional flow field from the two-dimensional mean flow, i.e.

u1,rms(x1) =

(
1

HLz

∫ H

0

∫ Lz

0

(u1 − u1)
2 dx3 dx2

)1/2

. (20)

In equation (20), u1 again denotes the spanwise average of the streamwise velocity,
which is almost identical to a purely two-dimensional flow for all disturbance
amplitudes considered. The variation of the r.m.s.-values with x1 is displayed in
figure 16, where a sensitive reaction of the flow in the step region can be observed
in all cases. A sharp local increase of u1,rms occurs around x1 = 20 which contrasts
with the continuous decay of the disturbance amplitudes in the inflow and outflow
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Figure 14. Comparison of two-dimensional and averaged three-dimensional FFS flow. (a)
depicts isocontours of streamwise velocity u1 as obtained from a two-dimensional simulation.
(b) gives isolines of the spanwise-averaged velocity u1 from a three-dimensional simulation at
the same Reynolds number. In the three-dimensional case, the disturbance amplitude in the
inflow plane was set to εe = 0.05.

section of the channel. To make the linearity of the flow response at the step obvious,
we have normalized all three curves in figure 16(a) by their values at the inflow
location. The result is displayed figure 16(b), and it shows a perfect collapse of all
curves as should be expected for a linear mechanism. This linearity is also seen from
an inspection of the spatial shape of the dominant Fourier modes û1(m = 1), which
are depicted in figures 17 and 18 for the largest and smallest disturbance amplitude,
respectively. In both cases, the shape function has been normalized by its maximum
in the (x1, x2)-plane. Despite the fact that these maximum amplitudes differ by an
order of magnitude, the shape functions are almost indistinguishable.

In addition to the shape function for û1(m = 1), figure 17 also gives the associated
shape functions for the other velocity components. From û2 and û3, the localization
of the disturbance in the neighbourhood of the step is recognized very clearly.
Larger disturbance levels exist only in the separation region and downstream of the
corner, while the amplitudes quickly decay with increasing distance from the step.
Perturbations in u2 and u3 become negligibly small beyond, say, x1 = 24. Note that
this is not in contradiction with the persistent vortex structures seen in the outflow
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Figure 15. Development of three-dimensional modes in FFS flow after t = 70, when inflow
disturbances are not maintained. Shown is the time history of the maximum |û1|max of the
spanwise Fourier amplitudes of u1. Results for Fourier modes m= 1–5.

section of the channel in figure 9. Since the sectional streamlines were computed
from u2 and u3 only, they can reveal a weak vortical motion that could not easily be
recognized from the pathlines of the fluid. Because u1 is much larger here than the
other two velocity components, particle trajectories are essentially straight lines in the
outflow section of the channel.

A visual impression of how the three-dimensionality at the step gradually decreases
with decreasing disturbance amplitudes can be gained from figure 19. In this figure,
sectional wall-friction lines on the channel floor ahead of the step are shown for
disturbance amplitudes of εe = 0.01 and εe = 0.005, respectively. Comparing these
results with the result for εe = 0.05 in figure 19 illustrates that the spanwise distortion
of the separation line weakens when the perturbation amplitude is reduced. For the
smallest amplitude, the separation line varies almost sinusoidally without the sharp
kinks, which are characteristic for larger disturbance levels. Clearly, for yet smaller
perturbation amplitudes, the spanwise variation of the separation line diminishes
further, but we found that the deformation of the separation line remains visible
down to amplitudes as low as ε = 10−4. This sensitivity of the shape of wall friction
lines to minute disturbances highlights the difficulties that will be encountered when
attempting to set up nearly two-dimensional FFS flows in the laboratory. Inflow
disturbances well below 1% at some 10 step heights upstream of the step will be
required.

To understand the substantial change in appearance of the flow in the separation
region better, it is helpful to consider the wall friction of the flow from which the line
of separation is defined. Figure 20 presents a comparison of the mean shear of the
three-dimensional flow at the wall (which, again, is almost identical to the shear of the
undisturbed two-dimensional solution), and the fluctuating component of the shear
∂u1/∂x2 due to the dominant mode m = 1. The curves are given for a disturbance
amplitude of εe =0.05, but the results for the smaller disturbance amplitudes differ
from the curves shown in figure 20 only with respect to the intensity of the fluctuating
component m = 1. It is seen from the curves how the mean shear at the wall strongly
decreases from its value of 1.5 in the undisturbed flow to values of the order of
0.1–0.2 ahead of the step. In this region, the amplitude of the fluctuating part takes its



20 D. Wilhelm, C. Härtel and L. Kleiser
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Figure 16. Root-mean-square (r.m.s.) variation of u1 as function of x1. Results for different
perturbation amplitudes εe in the inflow plane. (a) Absolute r.m.s levels; (b) r.m.s. values
normalized by the respective values (urms,0) in the inflow plane.

maximum and has about the same magnitude as the mean shear. If the disturbance
amplitude is large enough, a superposition of the curves for the fluctuating part and
the mean-flow part produces regions where the total shear ∂u1/∂x2 is non-negative
from the inflow up to the step wall. Such regions are clearly visible in figure 11 around
spanwise locations x2 of about 1.2 and 4.0. On the other hand, for small amplitudes
in fluctuating shear, only a weak perturbation of the line of separation will occur.

4.5. Wavenumber selection

In all simulations discussed so far, the box size in the spanwise direction was set to
about three times the step height, which corresponds to the preferred spanwise spacing
of the three-dimensional flow structures. A hint that this preferred length scale may
be related to some wavenumber selection process was already gained from the linear
stability analysis, which showed the smallest damping rates for wavenumbers around
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Figure 17. Isocontours of the Fourier components ûi of the mode m= 1. Results for a
disturbance amplitude of εe = 0.05 in the inflow plane.

α = 2. To demonstrate that the same selection mechanism acts on a broadband inflow
disturbance spectrum, we conducted simulations with a large number of excited
modes in wide boxes of Lz =15.71 and Lz = 31.41, respectively. These box widths
correspond to fundamental wavenumbers of α0 = 0.4 and 0.2. Here, results will be
presented for the first case only, since essentially identical results were obtained in
the other case. Thirty complex Fourier modes were employed for the discretization
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Figure 18. Isocontours of the Fourier component û1 of the mode m= 1. Results for a
disturbance amplitude of εe = 0.005 in the inflow plane.
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Figure 19. Wall-friction lines on the channel floor ahead of the step. Results for different
disturbance amplitudes εe in the inflow plane (same type of inflow disturbances as for the flow
in figure 9). (a) εe =0.01, (b) εe =0.005.

in the spanwise direction. In the inflow plane perturbations according to (19) were
prescribed for all modes, with identical amplitude εe = 0.03 but with random phase
shifts added to the arguments in the sine function. To quantify the excitation level of
each Fourier mode, we computed the following modal energy E1 of û1

E1(x1, m) =
1

H

∫ H

0

|û1(x1, x2, m)|2 dx2. (21)

In figure 21, the variation of E1 with x1 is plotted for all spanwise modes. In
the channel section ahead of the step, the curves show that modes with shorter
spanwise length scale (that is with higher m) feature higher decay rates. The difference
is less pronounced, though, for modes with a length of periodicity much larger
than the channel height (m = 1, 2), since for such disturbances streamwise and wall-
normal velocity gradients play a more important role concerning dissipative losses
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averaged flow, the solid curve gives the mean shear at the wall. The dashed curve gives the
amplitude of the fluctuations in shear ∂u1/∂x2 due to the mode m= 1. Results for a disturbance
amplitude of εe = 0.05 in the inflow plane.
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Figure 21. Square root of the streamwise mode energy (E1(x1,m))1/2 for different modes m
as a function of x1. The length of periodicity Lz was set to 15.71 in this simulation (α0 = 0.4).

than spanwise gradients. The crucial wavenumber selection process at the step is
clearly revealed by the pronounced differences between the curves at about x1 = 20.
Modes with wavenumbers around m =5, 6 experience a much larger increase in
amplitude than modes of either shorter or longer wavelength. Given the fundamental
wavenumber of αz = 0.4, preferential excitation is thus found for disturbances with
wavenumbers between 2.0 and 2.4, i.e. with a spanwise scale of about 2.5–3 times the
step height. This agrees closely with the linear-stability results presented before, and
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Figure 22. Streamlines for wide box simulation with Lz = 15.71 (α0 = 0.4).

also with the spacing observed in experiments (see Stüer 1999). This wavenumber
selection process is the reason why inflow disturbances in the form of broadband
noise still produce a cellular structures with a spacing close to three times the step
height at this Reynolds number.

To give an impression of the three-dimensional flow developing in the wide-box
simulation, we have evaluated streamlines for the final steady-state velocity field,
which are displayed in figure 22. The vortical motion in the separation region ahead
of the step is again clearly visible, as well as the characteristic streaks downstream of
the step with a dominant spanwise spacing.

5. Summary
We have discussed results from a computational study of laminar forward-facing

step flow at a Reynolds number of 330 (based on step height h and bulk velocity
of the oncoming flow). The study was conducted to gain better understanding of
the pronounced three-dimensionality in the step region that is commonly observed
with this flow. The configuration considered is an infinitely extended step in a plane
channel of height H = 4h. Possible sidewall effects are not taken into account in
our study; however, the close agreement between our computational results and the
experimental findings suggets that, at least as far as the structure formation at the
step is concerned, sidewall effects do not play a critical role.

To clarify whether the three-dimensionality is caused by some absolute instability of
the closed separation bubble of the two-dimensional FFS flow, we conducted a linear-
stability analysis of the flow in the first part of the paper. The analysis concentrates
on the flow in the step region and employs two-dimensional simulation data for
the base flow. The response of this base flow to three-dimensional disturbances of
small amplitude was then analysed. We presented the relevant stability equations and
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briefly outlined the numerical solution method. The stability curve obtained makes
clear that in two-dimensional FFS flow small three-dimensional disturbances in the
step region and the separation zone decay with time, meaning that – in the present
configuration and for the Reynolds number considered – the flow is not absolutely
unstable.

The main part of the paper was then devoted to direct simulations of three-
dimensional forward-facing step flow, which were initialized with a two-dimensional
solution and superimposed perturbations of a different kind and intensity. To be able
to capture all relevant flow phenomena accurately, a high-order numerical simulation
technique was employed, based on spectral-element and Fourier spectral approaches
for the spatial discretization. Consistent with the findings from the stability analysis,
the simulations reveal that the two-dimensional–three-dimensional transition in the
step region is a not a manifestation of some absolute instability of the separation
zone; rather, it is a sensitive reaction of the flow in the step region to incoming
disturbances. In consequence, when the disturbances in the oncoming stream are
not maintained, the flow unconditionally returns to the two-dimensional state. The
response of the flow at the step goes along with a topological change from a two-
dimensional closed separation bubble to an open type three-dimensional separation.
We demonstrated that disturbance amplitudes of less than 1% of the mean flow
intensity (measured at a position of some 10 step heights upstream of the step)
already suffice to produce a visibly three-dimensional structure at the step. However,
a transition from a pronounced three-dimensional state to almost two-dimensional
recirculation is observed if the disturbance level is systematically decreased. Although
even for small disturbance amplitudes, the changes in flow topology at the step
appear dramatic, the simulations reveal that the three-dimensional structure in the
separation region is in fact a linear response of the two-dimensional base flow to small
perturbations. The intensity of the three-dimensionality at the step was shown to be
proportional to the intensity of the disturbances in the incoming flow. Moreover, we
found that, at least for the case considered here, the average properties of forward-
facing step flow are well captured by a two-dimensional model. We compared the
spanwise-averaged flow field of a three-dimensional simulation with a strictly two-
dimensional flow at the same Reynolds number, and found these to be virtually
identical.

The simulation results were compared with recent experimental data on the
flow topology of forward-facing step flow and close agreement was observed. The
characteristic shape of the streamlines in the step region, as well as the formation
of streaks downstream of the step edge, are fully reproduced in the computations.
In addition, we showed that the pronounced streaks are directly related to pairs of
counter-rotating vortices that develop at the step and persist further downstream.
Finally, the simulations illustrate how the spanwise spacing of the streaks is an
intrinsic scale of the flow which corresponds to a wavenumber selection process
acting in the step region. In good agreement with experimental observations, we
found the preferred spanwise scale to be about three times the height of the step at
the present conditions.

The authors wish to thank Dr A. Gyr, and Dr H. Stüer for helpful discussions.
We thank G. Jaquemoud for his assistance with the linear stability analysis. The
simulations were performed on the NEC SX-5 system of the Swiss Center for
Scientific Computing (CSCS) in Manno.
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Gerdes, K. & Schötzau, D. 1999 hp-finite element simulations for Stokes flow – stable and
stabilized. Finite Elem. Anal. Des. 33, 143–165.
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